New manuscript out by the EIP working group

At the last VectorBiTE meeting at Imperial College, the EIP working group sketched out a plan for a review paper on how to define and improve measurements of the extrinsic incubation period (EIP) for malaria parasites. Our review is finally complete and has been published in Parasites & Vectors. The article is available here.

Don’t have time to read the manuscript? Here are a few of the key points we made in the paper:

(1) Malaria’s EIP has been inconsistently measured and reported in the past. Many studies report EIP as the time until the first observation of sporozoites in the salivary glands following an infectious feed. However, this ignores variation in development time that is likely present in a mosquito population and may not be representative of the EIP we want to capture in models of transmission if this earliest time of development is not the time when infectious mosquitoes are also feeding. See our Figure 1 for variation in EIP documented from the literature compared to the Detinova model that is used to predict EIPs based on temperature.

(2) Many factors are likely to affect EIP but most studies only consider temperature. The classic model to predict malaria’s EIP (the Detinova model) uses mean temperature to predict EIP. We evaluated evidence from the literature that fluctuating temperatures, parasite genetics, vector genetics, and other environmental factors such as mosquito diet, may also impact EIP.

(3) The best way to report EIP may be using the median EIP value observed from a mosquito population, rather than the time until first observed sporozoites. We run through an example of how using EIP estimated as the time until first observation vs estimated as the median EIP changes predictions of a proxy for potential transmission intensity (the number of alive and infectious mosquitoes). Future studies that make use of non-destructive sampling techniques to look at sporozoites in the salivary glands of individuals over time will hopefully make studies on EIP easier to do and better capture variation in EIP between individual mosquitoes.

VectorBiTE 2018 Reminder

Hi VectorBiTErs,

Just a quick reminder for upcoming deadlines:

Working Group Applications: DUE March 2, 2018 – The application can be found here.

Training Workshop Applications: DUE March 16, 2018 – The application can be found here.

VectorBiTE Annual Meeting Applications:  DUE March 16, 2018 – The application can be found here.

 

Applications for the 3rd VectorBiTE RCN annual meeting, to be held June 11-15, 2018 at the Asilomar Conference Center in CA, are due soon! This meeting has two parts. The first (June 11-13) will be a workshop for graduate students and postdocs on mathematical and statistical methods as well as an introduction to the VectorBiTE Population Dynamics (VecDyn) database. The second portion of the meeting (June 13-15) will be the main RCN meeting with an emphasis on jump-starting new working groups and projects. Applications for each of the two sections will be processed separately. We expect to fully fund up to 50 participants. A limited number of slots may be available for local and/or self-funded participants.

 

 

VBiTE 2018 Deadlines

Hi VectorBiTErs,

We are pleased to announce our first call for applications for the 3rd VectorBiTE RCN annual meeting, to be held June 11-15, 2018 at the Asilomar Conference Center in CA. This meeting has two parts. The first (June 11-13) will be a workshop for graduate students and postdocs on mathematical and statistical methods as well as an introduction to the VectorBiTE Population Dynamics (VecDyn) database. The second portion of the meeting (June 13-15) will be the main RCN meeting with an emphasis on jump-starting new working groups and projects. Applications for each of the two sections will be processed separately. We expect to fully fund up to 50 participants. A limited number of slots may be available for local and/or self-funded participants.

 

Deadlines:

Working Group Applications: DUE March 2, 2018 – The application can be found here.

Training Workshop Applications: DUE March 16, 2018 – Application will be posted shortly.

VectorBiTE Annual Meeting Applications:  DUE March 16, 2018 – Application will be posted shortly.

A Geodatabase on Anophelines in the Afrotropics!

A research group funded by Wellcome Trust have just produced a newly updated geodatabase on anophelines in the Afrotropics (sub-Sarahan Africa, SSA). It updates the inventories produced by both the MAP and MARA groups, building on a long history of inventories, and includes both dominant and potential secondary malarial vectors. The final database comprises a total of >13,000 Anopheles survey locations. This is a wonderful new resource and is uploaded in entirety to the Harvard Dataverse for researchers to access and use (http://dx.doi.org/10.7910/DVN/NQ6CUN)

How to cite:

Kyalo D, Amratia P, Mundia CW et al. A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016 [version 1; referees: awaiting peer review]. Wellcome Open Res 2017, 2:57 (doi: 10.12688/wellcomeopenres.12187.1)

The Dataverse information:

Snow, Robert W., 2017, “A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016”, doi:10.7910/DVN/NQ6CUN, Harvard Dataverse, V1

 

By VectorBiTE member Sadie J. Ryan

 

The collection and public dissemination of mosquito abundance data, AMCA symposium

From discussions started at the 2016 VectorBiTE symposium, a symposium on mosquito abundance data has been organized for the American Mosquito Control Association annual meeting in San Diego in February 2017. Many of the RCN members are involved. If this topic interests you,  we hope you’ll join us!

The collection and public dissemination of mosquito abundance data: Perspectives and options.

Mosquito Surveillance in Iowa (1969-present): Perspectives, Achievements, and Challenges
Ryan Smith, Iowa State University

Mosquito surveillance has been performed in the state of Iowa for nearly fifty years. This has enabled accurate assessments of mosquito diversity, abundance, the establishment of invasive mosquito species, and arbovirus transmission. We will discuss the strengths of long-running mosquito surveillance, data dissemination, arbovirus transmission dynamics, as well as future challenges.


Mosquitoes in Hawaii: engaging the public using the INaturalist citizen science platform
Durrell D. Kapan, Ph.D. , University of Hawaii – Manoa


Perspectives from a Mosquito Control District that shares extensive data online
Barbara Bayer, Manatee County Mosquito Control District, Florida

This presentation will discuss Manatee County Mosquito Control District’s objective in posting surveillance data on our website and the pros and cons associated with general access to that data.


 Scope and insights from already publicly-available mosquito abundance data
Samuel Rund, University of Edinburgh, United Kingdom.

There are current calls for the aggregation and dissemination of mosquito population abundance data generated by mosquito abatement districts. There are many benefits of this data sharing, but also legitimate concerns. However, many districts already provide publicly available data on their websites, or submit their data to state-level aggregators.  I will present an overview of this already publicly available data, such as the scope, differences in reporting, hurdles, and some insights gained from aggregation of the data.


Reconstructing Spatiotemporal Patterns of Vector Abundance via Online Data Sources
Micaela Elvira Martinez, Princeton University, US.

Vector-borne infectious diseases continue to pose a public health threat. Epidemiological studies of the transmission of emerging vector-borne diseases (e.g., Zika and Chikungunya) are limited, due to the lack of data as epidemics unfold. In the face of data limitations, we propose that vector abundance can be used as a proxy for pathogen transmission potential. We have identified and curated vector abundance data from online public health and environment websites. We used these integrated data to study broad spatiotemporal patterns of vector abundance. Specifically, we characterized (1) the seasonality of mosquitoes—at the genus level—using trap data, and (2) geographic variation in seasonal cycles of vector abundance. Due to the seasonal transmission of vector-borne diseases, such data can be used to form testable predictions regarding the seasonal structure of disease risk (for emerging pathogens) and to identify data-gaps to be supplemented, specifically with the collection of more trap data or epidemiological case reports of disease.


Thoughts on the difficulties of interpreting shared mosquito abundance data
Douglas Carlson, Indian River Mosquito Control District, Vero Beach, FL

Surveillance is an integral component of any IPM-based mosquito control program yet the proper interpretation of such data must take into account a variety of environmental factors.  Based on previous research, this presentation will attempt to provide some insights as to the importance of considering several variables when reviewing abundance data.  However when considering shared data, it is common that such environmental factors are not adequately considered.  This can lead to the strong possibility of incorrect conclusions being drawn from this shared information.


“Connecting Vector Abundance with Vector Ecology: VectorBITE”
Samraat Pawar, Imperial College, London, UK

The Vector Behavior in Transmission Ecology (VectorBiTE) research network brings together theoreticians and empiricists interested in better understanding the role of vector behavior and variation in individual vector traits in determining disease dynamics. As part of this effort, the network is creating two publicly available data bases. One of these, VectorDyn, will contain information on vector abundance through time and space.  We will present our current progress in this effort and discuss how the VectorBiTE community envisions applying this resource to better understand transmission dynamics.


Statewide Mosquito Surveillance System for Florida
Adriane N. Rogers, Florida Department of Agriculture and Consumer Services

The Florida Department of Agriculture and Consumer Services (FDACS) has received an increasing number of requests for statewide mosquito surveillance data since January 2016 due to the current public health emergency of global concern that we are faced with as a result of the Zika virus. A repository for statewide mosquito distribution and abundance data does not currently exist in Florida. FDACS has been pursuing the creation of a statewide database to monitor species abundance/distribution, track invasive mosquito species, identify trends in population dynamics over time, and to enhance/predict response to emergency storm events or public health situations rapidly and early. Ideally, this would be an online data sharing platform that would make access to the data immediate. This would be useful to counties to determine what species may be occurring in neighboring counties that could potentially impact their respective control operations and could be correlated with weather, flight range of species, etc.. This information would also be useful for researchers in Florida interested in various aspects of mosquito biology or ecology, arboviruses, or mosquito control. FDACS is in the very early stages of identifying resources and information technology companies to create a database that would suit the needs of Florida. This would not only be useful for Florida, but would have potential to fill a void in other states’ mosquito surveillance capabilities as well.


Benefits and pitfalls of using mosquito abundance data from varied sources in models –  closing remarks and synthesis

Cynthia Lord, Florida Medical Entomology Lab


Those interested in this topic, may also be interested in “Map-based exploration of vector surveillance data in VectorBase” which will be held during a different session.